Shape Modeling and
Geometry Processing

(Discrete) Differential Geometry
Planar Curves - part 2
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RECAP: Curvature in arc-length parameterization

Curvature K corresponds to the rate of

d < +K ’
change of the tangent t

(size of its derivative) r

N (unit

normal)

Curvature is inversely proportional to the e — 1 ‘
osculating circle radius r - r
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RECAP: Curvature and Topology

Turning Number Theorem: / kdt =
For a closed curve, gl

the integral of curvature is
an integer multiple of 2r.

kdt = 2k
N

Interpretation: If you want to drive back to the start, your total
curvature / steering needs to match the number of loops times 2x.
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Recap: Total Curvature

What is the total curvature of the following curve?
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Some references: see
http://ddg.cs.columbia.edu/

(Discr ete @ )

DDG - Curves
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http://ddg.cs.columbia.edu/

Discrete Planar Curves

ful @

peauti

ETH-urich



Discrete Planar Curves

Piecewise linear curves
Not smooth at vertices
Can’t take derivatives

Generalize notions from the smooth
world for the discrete case!
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Inscribed Polygon, p

Approximation of the smooth curve.
Finite number of vertices

each lying on the curve, Impossible to
connected by straight edges. represent a circle
perfectly &)

Many discrete curves
approximate the same
smooth curve. &)
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The Length of a Discrete Curve
n—1
len(p) = Z IPi+1 — Pill
i=1
Sum of edge lengths

(easy ©) p 3 g
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The Length of a Continuous Curve

sup len(p)
p

“Limit length of all
inscribed polygons.”

|9L 19 March, 2025 Olga Sorkine-Hornung, Marcel Padilla # 10 HHZUf’[Ch



The Length of a Continuous Curve

...take limit over a refinement sequence

lim 1
lim len(p) ,

Often any polygon
resolution is not

enough @ h = max edge length
(infinite resolution need)
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Tangents, Normals

For any point on the edge,
tangent t = unit vector along the ( )
normal n = tangent vector rotated by 90" anti-cloclwise

to 2 Y
~ S
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Tangents, Normals

For vertices, we have many options

There is no “obvious” choice!
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Tangents, Normals

Can choose to average the adjacent edge normals
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Tangents, Normals

Weighting by edge lengths

’61‘ﬁ61 B ’62‘ﬁ€2
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Curvature of a Discrete Curve

Curvature is the amount of change in normal
direction as we travel along the curve

W e [1] /

no change along each edge -
curvature is zero along edges
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Curvature of a Discrete Curve

Curvature is the amount of change in normal
direction as we travel along the curve

.

/\ normal changes at vertices
- record the turning angle!
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Curvature of a Discrete Curve

Curvature is the amount of change in normal
direction as we travel along the curve
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/\ normal changes at vertices
- record the turning angle!
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Discrete Gauss Map

Edges map to points, vertices map to arcs.
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Turning numbers well defined!
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Curvature of a Discrete Curve

Gauss Map and turning angle constant along the edges
Turning angle at the vertices = the change in normal direction

Total 51gned curvature

tsc(p g % /O -7 )
1 é O(‘j /
/ )
Sum of turning angles '\OL}
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Total Curvature

What is the total sighed curvature of the following curve?

tsc(p) = Zn:% =7 /
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Discrete Turning Number Theorem

Discrete Turning i\ilumber Theorem: \\,.\ < )
tsc(p) = E a; = ¢ RN
. .-/ N
1=1 (
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Total Curvature

What is the total curvature of the following curve?
tsc(p) = Zai =0 /
1=1
/ kdt = 0
o
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Turning Number Theorem

Continuous world Discrete world
Tdt:%rk } a; = 2k
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Curvature is scale dependent

& Let’s look at circles of different sizes

© L O
K — —
There 152 \)rob\em" T K; K:

V [ is scale-dependent O
x (X; is scale-independent
X g
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Discrete Curvature - Integrated Quantity!

We cannot view a; as pointwise
curvature

It is integrated curvature over a
local area associated with vertex i

®
1 — Al i
g = Ao - Ko The vertex areas A; form a covering of
the curve. They are pairwise disjoint
E A; = 1en (except endpoints).

|9L 19 March, 2025 Olga Sorkine-Hornung, Marcel Padilla # 26 HHZUf’[Ch



Turning Number Theorem

Continuous world Discrete world
T
//idt:27rk E ;)= 2Tk
Y =1

) 4 I} @
R @: Qv Much bettey

Length elements
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Structure Preservation

For arbitrary discrete curves:

Total signed curvature obeys Of cong quesanazéguG
discrete turning number theorem

even coarse curves

Which other continuous
theorems to preserve?

That depends on the application...
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Convergence

Consider a curve refinement sequence

lim length( polygon ) = length( smooth curve) .
Ideally:

refinement
@
[ ]
discrete measures approaches continuous analogue when refining.

Questions: D
* Which refinement sequence?
» depends on discrete operator y 1

» pathological sequences may exist (e.q. schwarz latern)

* In what sense does the operator converge?
* pointwise, L, linear, quadratic
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Pathological Sequences Example

N — M?
A mesh that converges to the M: 6
cylinder but has a different area. N: 10

area: 6.362709035

V
kq

what’s the curse of the
> | SCHRZ LANTERN ?

p—

d3D907T0HL

Schwarz lantern area convergence (or lack thereof) for different refinement strategies. (Wikimedia)
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Another option for curvature

Alternative discrete curvature based on oscillating circle relation.

R — —
T
Pass a circle through 3 points, take 1/radius &
Equal to the angle in the refinement limit ()
Better accuracy (faster convergence) @& p Pz g
But no turning number theorem &) l

Still, in practice this is often the
most convenient discrete
curvature definition. /5

fe]\ ETH:(irich



Recap

Convergence VS. Structure-preserving
based approach: .
approach:
Converging to the smooth EXACT property preservations
equivalent when refining the mesh. even on coarse meshes
Generally easier but sometimes with e.g. discrete turning number theorem
approximation issues (Generally harder to achieve)
Traditional numerical Discrete Differential
analysis Geometry (DDG) &
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Shape Modeling and
Geometry Processing

(Discrete) Differential
Geometry Surfaces
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Intrinsic and extrinsic properties

——

Planar sheet Isometric shapes

Shaped without any distortion
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Intrinsic and extrinsic properties

Intrinsic properties:
preserved under isometry

Distance on surface
Angles on surface

Extrinsic properties:
depend on the embedding

Tangents

Normals What js CUrvat,
on re

Curvature — “°Ufacer @

|qL March 19, 2025

What a tiny tiny Ant
living on the surface
would notice.

s

What a big outside
observer would
notice.

o

Olga Sorkine-Hornung, Marcel Padilla

Isometric

intrinsically the same
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Surfaces, Parametric Form

Continuous surface

. It’s like a
Tangent plane at point coordinate system!
p(u,v) is spanned by
o _Op(wy) - Op(u,v)
! ou = 7 v
A\ These vectors don’t have to be orthogonal u>
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Isoparametric Lines

Lines mapped on the surface when
keeping one parameter fixed in the parametrization

Yuo (v) = P(uo,v)  LALL

v fixed this example @

ANER\EEERERN

e TN
— perivatives cleary  EHEEEREEE

Yoo (U) = P, V0) " Svosonat v TR
SENEREEREREREN

S
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e e

Intrinsic Geometry

. Im
- First fundamental form "t g
Parametri;atiop Alignment of
speed of u direction parametrizations

T T

1 (£ £\ _ (PuPu PyPu
o T T T

F G pu p’U pfu p’U

op(u,v)
A N ST
Alignment of Parametrization
parametrizations speed of v direction

» Needed to define lengths, angles and areas.
» |t defines the metric of the surface. u>
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The First Funhdamental Form

First fundamental form
. (E F) _ <plpu plm)
F G PIPy P.Pu

Maps the canonical uv-plane to the tangent plane

Defines a scalar product in the uv-plane
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The First Fundamental Form

I allows to measure
length, angles, area on the surface @
arc element
ds® = E du® + 2F dudv + G dv?
area element

dA = \/ EG — F? dudv

determinant of |

Anything the tiny ant can measure 3@
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e

Surface Normals

» Surface normal:

| |Pu X Pu|
A

Assuming regular
parameterization.

Definition: p’U, >< prU # O
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The Second Fundamental Form

Local coordinate frame

tangets p,, p, and normal n \
The surface is locally a height field w.r.t. i

the tangent plane p

The height field can be locally

approximated by a quadric:

) O'@ @ " O’ I — _ (plun p&ﬂ)

T T
,think 2nd order Taylor expansion* puv n pvv 1
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The Second Fundamental Form

Out of plane bending Mixed curvature
in u direction. interaction
T >
€ n
II = f — p-l— puv Beautiful! @
f g Py, Pm

Mixed curvature Out of plane bending
interaction in v direction.

,How is my surface bend relative to the normal plane?
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Fundamental Forms

First fundamental form (first derivative surface behavior)

T T
1— (& I} _ (PuPu PyPy
F G P,Pv  P,Pu
Second fundamental form (second derivative surface behavior)
T T
f g Pyt Py,
Together, they define a surface! Compare with curvature of planar curves:

(if certain compatibility conditions hold,

called Gauss-Codazzi-Mainardi equations). (Curvature determines the entire curve shape)
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Directional Normal Curvature

’ [Pu % Poll Let v be the intersection curve

of the surface with the plane
/ through n and t.
, Normal curvature:
/L\ K,(¢@) = x(y(p))
| Ve | < > N Unit-length direction t
/ r : \\/ in the tangent plane:

® Tangent plane

Directional normal curvature of surface = curvature
of the intersection curve passing in this direction

Animatjon by-Michael Hartmann, made/in GeoGebya
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Surface Curvatures

Principal curvatures
Minimal curvature K1 = Kmin = Min Ky (@)
)

Kmax = mgx Kn ()

Maximal curvature K2

Reminder:
Il is local quadratic approximation of the surface

as height field over the tangent plane

I (e f) _ (plun p&ﬂ)
f Pyl Pyl
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Surface Curvatures

I — (6 f) B <Plun plvn>
f Pyl Poyh

wlllw = normal bending in directon w, |jw|| =1

s R
Theorem:
K1 = Kmin , K2 = Kmg, are eigenvalues of the II

N Y

II is a symmetric matrix - has real eigenvalues and orthogonal eigenvectors

Max and min bending directions are always orthogonal! &
(Because symmetric matrices have orthagonal eigenvector basis.)
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Thank you
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